USSR

ARONZON, V. L., BERKH, V. I., LEVIN, M. V., LOKSHIN, R. G., Avtomatiz. Proizv. Protsessov. Tsvet. Metallurgii, Ordzhonikidze, Ir Press, 1971, pp 73-75.

alumina plants, based on mathematical models of the technological processes being controlled.

UDC 669.71.011.56

BERKH, V. I. LEVIN, M. V.

"Scientific and Technological Prerequisites of Developing Automated Systems in Alumina Production"

Tr. Vses. n.-i. i provektn. in-ta alyumin., magn. i elektrodn. prom-sti (Works of the All-Union Scientific Research and Planning and Design Institute of Aluminum, Magnesium and Electrode Industry), 1970, No 70, pp 183-188 (from RZh-Metallurgiya, No 4, Apr 71, Abstract No 4G122)

Translation: The sequence and content of the basic steps of creating automated control systems for the production processes of obtaining ${\rm Al}_2{\rm O}_3$ are discussed.

A list of scientific problems occurring in this case is introduced, and means of solving them based on the results of the scientific research work performed are indicated. The requirements on the technological process and equipment insuring the highest efficiency of the automated control systems for $^{\rm Al}_{2}^{\rm O}_{3}$ production are formulated.

1/1

REPRESENTATION DE LA COMPUNICACION DE LA COMPUNICACION DE LA COMPUNICACION DE LA COMPUNICACIÓN DEL COMPUNICACIÓN DE LA COMPUNICACIÓN DE LA COMPUNICACIÓN DE LA COMPUNICACIÓN DE LA COMPUNICACIÓN DEL COMPUNICACIÓN DE LA COMPUNICACIÓN DEL COMPUNICACIÓN DEL COMPUNICACIÓN DEL COMPUNICACIÓN DE LA COMPUNICACIÓN DEL COMPUNICACIÓN DE LA COMPUNICACIÓN DE

USSR

UDC 669.71.053.4

ARONZON, V. L., GANZBURG, YA. D., LEVIN, M. V., LOKSHIN, R. G., FINKEL'SHTEYN, L. I.

"Algorithmization of Control of the Section for Preparing the Charge of the Alumina Shop at a Nepheline Plant"

Tr. Vses. n.-i. i proyektn. in-ta alyumin., magn. i elektrodn. prom-sti
(Works of the All-Union Scientific Research and Planning and Design Institute
of Aluminum, Magnesium and Electrode Industry), 1970, Np 70, pp 28-34 (from
RZh-Metallurgiya, No 4, Apr 71, Abstract No 4G136)

Translation: Principles are formulated for a production raw material input control which insures stabilization and synchronization of material flows with observation of the required quality of the charge obtained. Control algorithms for individual sections are developed on this basis: bins, mills, a repulping machine, and a correction unit. There is I illustration.

1/1

UDC 669.712.1.05

AGRANOVSKIY, A. A., BERKH, V. I., KAVINA, V. A., LEVIN, M. V., LYAPUNOV, A. N., MONTVID, A. E., MUNITS, I. N., and CHERNIN, V. N.

"Spravochnik metallurga po tsvetnym metallam" (Metallurgist's Handbook of Non-Ferrous Metals), Moscow, Izd-vo "Metallurgiya," 1970, 320 pp

Translation of Annotation: Data on the physico-chemical properties of the most important aluminum compounds and aluminum solutions are presented, phase diagrams of chemical systems determining the processes of alumina production by alkali methods are given, and standards and technical conditions are reviewed.

Various alumina production methods and reference data on the technology and equipment of alumina production are described.

The handbook is intended for engineers and technicians engaged in the aluminum industry. Ninety-one figures, 116 tables, 176 references.

TABLE OF CONTENTS (Abridged)

1/3

	· · · · · · · · · · · · · · · · · · ·	
USSR		
AGRANOVSKIY, (Metallurgist giya," 1970,	A. A., et al., "Spravochnik metallurga po tsvetnym 's Handbook of Non-Ferrous Metals), Moscow, Izd-vo 320 pp	metallam" "Metallur-
Foreword		9
Section Chapter 1.	One. PHYSICO-CHEMICAL DATA AND STANDARDS Minerals, Basic and Auxiliary Raw Materials and	
	Final Products of Aluminum Oxide Production	11
Chapter II.	Aluminum Compounds and Other Substances, Presentin Interest for Aluminum Oxide Production, Alkaline	g
•	and Aluminate-Alkaline Solutions	24
Chapter III.	Physico-Chemical Transformations in Aluminum Oxide	
	Production Processes	91
	Two. INDUSTRIAL PRODUCTION METHODS	
Chapter I.	Short Classification of Types of Aluminum Raw	
	Materials and Methods for Processing Them	134
Chapter II.	Thermal Methods of Aluminum Oxide Production	143
Chapter III.	Hydrochemical and Combined Methods of Aluminum	
	Oxide Production	183
2/3		

	USSR					····			
	AGRANOVSKIY, (Metallurgist giya," 1970,	A. A., et al., "S t's Handbook of No 320 pp	pravochni n-Ferrous	k metal Metals	lurga ¡	po tsv cow, I	etnym me zd+vo "M	tallam" etallur-	
	Chapter IV. Chapter V.	Acid and Acid-Al	ing Alumi kaline Al	num Oxi uminum	de Fron Oxide P	n Alun Toduc	ite tion	227	
(hapter VI.	Automatic Control				4 .1		232	
		Processes	•.					283	
R	eferences							314	
						:		214	
	* '			!		-1			
	*								
3,	/3								

USSR

UDC 669,162,267,645

LEVIN, M. Z., MACHIKIN, V. I., SKIADANOVSKIY, YE. N., KUZUB, A. G., and KRASAVISEV, I. N., Donetsk Polytechnic Institute, Donetsk Hetallurgical Plant

"Desulfuration of Pig Iron with Regulatable Introduction of Ingotted Magnesium"

Moscow, Metallurg, No 2, Feb 23, pp 10-12

Abstract: From 1970 on, studies have been conducted at the Donetsk Metallurgical Plant and Donetsk Polytechnic Institute on the Development of equipment
for use in the desulfuration of pig iron by regulated introduction of magnesium
ingots. A new method of introducing the ingotted magnesium into liquid pig
iron serves as the basis of the equipment. Diagrams show the equipment for
regulated magnesium introduction and a schematic of the gas supply to the
evaporator. Industrial test results are given. Two figures, one table.

1/1

USSR

UDC 621.396.677

LEVIN, O. I.

"Algorithms for the Solution of Nonlinear Magnetostatic Problems"

Tr. Mosk. in-ta radiotekhn. elektron. i avtomatiki (Works of the Moscow Institute of Radio-Engineering, Electronics and Automation), 1972, vyp.55, pp 50-60 (from R/h-Radiotekhnika, No 11, Nov 72, Abstract No 11 B9)

Translation: The finite-difference method and the method of secondary sources for the solution of a magnetostatic problem are studied and compared, with a statement of the advantages and disadvantages of both. Results are given for the numerical calculation of the magnetic fields which were conducted on a computer. Original article: nine illustrations and one table. Resume.

1/1

- 6 -

riskantense (selek 1912). Selek 1912 - Leman (mark) menten missimininini hibisah bilan kanasan mendestangan mente Kanasan kanasan kepadan kanasan kanasan mendan mengan kanasan kepada bilan kanasan kepada bilan kanasan menten Kanasan kanasan kepada kanasan kanasan kanasan kepada kanasan kepada bilan kanasan kepada bilan kanasan kepada

USSR

UDC 621.396.677.001.24

LEVIN, O. I.

"Compound Problem on the Synthesis of a Linear Array"

Tr. Mosk. in-ta radiotekhn., elektron. i avtomatiki (Works of the Moscow Institute of Radio Engineering, Electronics and Automation), 1972, wyp.55, pp 67-107 (from RZh-Radiotekhnika, No 11, Nov 72, Abstract No 11 B34)

Translation: The author studies a problem associated with the synthesis of a radiation pattern for a linear antenna array with equidistant positioning of the eaitters by emitter phase selection (phase synthesis). A series of practical examples is given. Original article: three illustrations and seven bibliographic entries. N.S.

1/1

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

and an experience of the second least of the control of the contro NAMERICA (ANTICA (ANTI LNCLASSIFIED . TITLE -- NEW FECTOSTAPILIZERS OF POLYCLEFIAS -U-ALTHUR--ZIMIN, YU.B., LEVIN, P.I., MATVEYEVA, E.A., KUZCULY, A.A., SETAIKEVA. L.N. SUCNTRY OF INFO-LESE SCURCE--FLAST. MASSY 1970, (1), 20-1 CATE PLELISHED -----7C SUBJECT AREAS--CHEMISTRY, MATERIALS TEPIC TAGS--CHEMICAL STABILIZER, POLYETHYLENE, PHOTOEFFECT, LIGHT AGING, BYDECKYL FACICAL, KEICNE, GRGANIC SULFUR COMPCUND, BENZENE DERIVATIVE, FULTHER/ LUIPRKZ LAMP, (LIPZCZCT PCLYETHYLENE, LUIF4020E FULYETHYLENE CENTROL MARKING-NC FESTAICTIONS BUCUMENT CLASS--LNCLASSIFIED SIEP NE-+UR/C191/70/000/001/0020/0021 PROXY PECLIFFAME -- 1980/1685 CARC ACCESSION AC--APCC45767 UNCLASSIFIEC

Acc. Nr: 0049767 Abstracting Service: CHEMICAL ABST. 5.70

Ref. Code: 4K 0191

101351g New photostabilizers of polyolefins. Limin, Yu. B.; Levin, P. I.; Matveeva, E. A.; Kozodoi, A. A.; Solnikova, L. M. (USSR). Plast. Massy 1970, (1), 20+1 (Russ). The effects of 2-hydroxy-4-octyloxyphenyl thienyl ketone (II) and 2-hydroxy-4-octyloxyphenyl thienyl ketone (II) as photostabilizers of low-d. polyethylene P 2020T (III) and high-d. polyethylene P 4020E (IV) were studied. Thus, 0.5-0.66% of I and II were added to III and IV and the polymers were aged under a PRK-2 lamp at 25°. The phys. and mech. properties of stabilized III and IV were unchanged after a 12 month exposure in the air, indicating that I and II were effective photostabilizers comparable to Benzum OA.

CKJR J MC

1/1

REEL/FRAME 19801685

PROCESSING DATE -- 27NOV/O UNCLASSIFIED 1/2

TITLE--UNIFORMLY APPROXIMATE SUBSTITUTION OF A CIRCULAR ARC FOR THE ARC OF A CURVE -U-

AUTHOR-(02)-REMEZ, YE.YA., LEVIN, S.S.

COUNTRY OF INFO--USSR

SOURCE-UKRAINSKII MATEMATICHESKII ZHURNAL, VOL. 22, NO. 2, 1970, P. 189-202

DATE PUBLISHED---- 70

SUBJECT AREAS -- MECH .. IND .. CIVIL AND MARINE ENGR, MATERIALS

TOPIC TAGS--METAL FORMING, CURVE GEOMETRY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1998/0566

STEP NO--UR/0041/10/022/002/0189/0202

CIRC ACCESSION NO--APOL21238

UNCLASSIFIED

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

2/2 019

CIRC ACCESSION NO--APO121238

ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. DEVELOPMENT OF AN ANALYTICAL METHOD OF APPROXIMATING THE ARC OF A CURVE BY A CIRCULAR ARC, BASED ON METHOD OF APPROXIMATING THE ARC OF A CURVE BY A CIRCULAR ARC, BASED ON THE USE OF CHEBYSHEV'S MODULUS MINIMAX PRINCIPLE. THE METHOD LEADS ID A THE USE OF CHEBYSHEV PROBLEM THAT LENDS ITSELF ID SOLUTION BY CLASSICAL TRANSFORMED CHEBYSHEV PROBLEM THAT LENDS ITSELF ID SOLUTION BY CLASSICAL ITERATION. THE METHOD IS APPLIED ID SEVERAL PROBLEMS ASSOCIATED WITH THE MECHANICAL SHAPING OF METALS. FACILITY: AKADEMIIA NAUK UKRAINSKOI SSR, INSTITUT MATEMATIKI, KIEV, UKRAINIAN SSR.

Acc. Nr.

Abstracting Service:

AA0031862

CHEMICAL ABST. 3-70

LEGIDAN BOLL.

All. Union Scientific Research Institute of Peteroleum Processing Bill. 1,177, 877 (CL. CVC). 14 Jan. 1970, Appl. 23 Aug. 1993;
6 pp. Ethylene, propylene, and 1,2-hexylene slycols were repred in \$507 % yields by hydrating the corresponding alkylene oxides with 1.1-1.3 equiva. of H₂O at 80-230 / 2.10 atm. in the presence of CO₂: a quaternary salt (Mean'l', Eth'l', Prin'er-, Eth'l HICl) or KBr. Nal, LiBr, KI, or NaBr; and, optionally, 0.1-20% (based on the alkylene oxide) NaHCO, Na2CO, or KHCO. Rote example, ethylene oxide 180, H₂O 74, Me₂N'l-2, and NaHCO, 1 g were mixed; CO₃ was added until the pressure was 30 alm. 1 g were mixed; CO₃ was added until the pressure was 30 alm. 1 g were mixed; CO₃ was added until the pressure was 30 alm. 1 g were mixed; CO₃ was added until the pressure was 30 alm. 1 g were mixed; CO₃ was added until the pressure was 30 alm. 1 g were mixed; CO₃ was added until the pressure was 30 alm. 1 g were mixed; CO₃ was added until the pressure was 30 alm. 1 g were mixed; CO₃ was added until the pressure was 30 alm. 1 g were mixed; CO₃ was added until the pressure was 30 alm. 1 g were mixed; CO₃ was added until the pressure was 30 alm. 1 g were mixed; CO₃ was added until the pressure was 30 alm. 1 g were mixed; CO₃ was added until the pressure was 30 alm. 1 g were pred, is mixed.

All this control of the pressure was 30 alm. 1 g were pred, is mixed.

All this control of the pressure was 30 alm. 1 g were pred, is mixed.

All this control of the pressure was 30 alm. 1 g were pred, is mixed.

All this control of the pressure was 30 alm. 1 g were pred, is mixed.

All this control of the pressure was 30 alm. 1 g were pred, is mixed.

BECPN

All this control of the pressure was 30 alm. 1 g were pred, is mixed.

All this control of the pressure was 30 alm. 1 g were pred, is mixed.

All this control of the pressure was 30 alm. 1 g were pred, is mixed.

All this control of the pressure was 30 a

USSR

UDC:533.6.011

LEVIN, V. A., Moscow

"Strong Injection on the Surface of a Body Around Which a Supersonic Gas Stream Flows"

Moscow, Mekhanika Zhidkosti i Gaza, No 5, Sep-Oct 73, pp 97-104

Abstract: The problem of strong injection on the surface of a body located in a supersonic gas stream is studied. It is shown that in the case of intensive injection, the motion of the injected gas can be described by Euler equations, while the influence of viscosity and effects of transfer appear only near the area of the line of the interface discontinuity separating the incident stream from the injected gas. It is found that in the first approximation, the pressure is constant across the layer and equal to the pressure on the interface. The problem of hypersonic flow around a plate or wedge of finite dimensions (considering the influence of the bow portion of the body) with arbitrary injection of an incompressible fluid on the surface, assuming that transverse pressure gradients can be ignored. In contrast to earlier works, a precise solution is constructed for the initial system of equations and it is shown strictly that the influence of the finite dimensions of the body in this case is predominant. The solution of the problem of injection of a fluid from a step in the body is also solved. 1/1

Heat, Combustion, Detonation

USSR

UDC 534.222.2

KOROBEYNIKOV, V. P., LEVIN, V. A., MARKOV, V. V.

"Explosion in A Combustible Gas Mixture"

Nauch. Tr In-t. Mekh Mock. Un-ta, [Scientific Works of the Institute of Mechanics], Moscow University, 1971, No 11, pp 83-89. (Translated from Referatīvnyy Zhurnal Mekhanika, No 1, 1972, Abstract No 18211 by G. A. Adadurov).

Translation: The problem of the explosion of a quiet, combustible mixture of gases is studied when energy is instantly liberated at a point along a plane or straight line. The gas is considered ideally nonviscous and non-heat-conducting. The process of combustion is calculated using a model which considers the delay time of ignition and subsequent simultaneous occurrence of the forward and reverse reactions. The equations are taken as Arrhenius dependences.

The analysis performed shows that the motion of the gas, in which exothermic reactions may occur, can be developed in two stages. The initial stage is when the quantity of energy liberated in the area limited by the flame front is small in comparison to the explosive energy. The course of the process in this stage is described by formulas providing the solution of the problem of a strong point explosion. The chemical reactions occur against the background of this flow. The strongly overcompressed detonation wave which develops with the explosion breaks down to an ordinary compression jump

•

UDC: 538.4

BARMIN, A. A. and LEVIN, V. A.

"Asymptotic Behavior of a Flane Kagnetohydrodynamic Detonation Wave"

Nauchn. tr. In-t mekh. Mosk un-ta (Scientific Transactions of the Moscow University Institute of Mechanics) 1970, No. 1, pp 83-87 (from RZh-Mekhanika, No. 2, Feb 71, Abstract No. 2E11)

Translation: The asymptotic behavior of a plane magnetonydrodynamic detonation wave is considered in a medium with infinite
electrical conductivity, in an external magnetic field of arbitrary direction. Equations are presented which describe the motion
of an ideal, infinitely conducting gas with plane waves and characterizing the transition through a magnetohydrodynamic detonetion
wave with the heat emission per unit mass of the gas taken into account. To estimate the deviation of the detonation wave intensity from the intensity of the Chapman-Jougue wave, a small parameter
te is introduced, which is expanded into equations characterizing

1/2

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

USSR

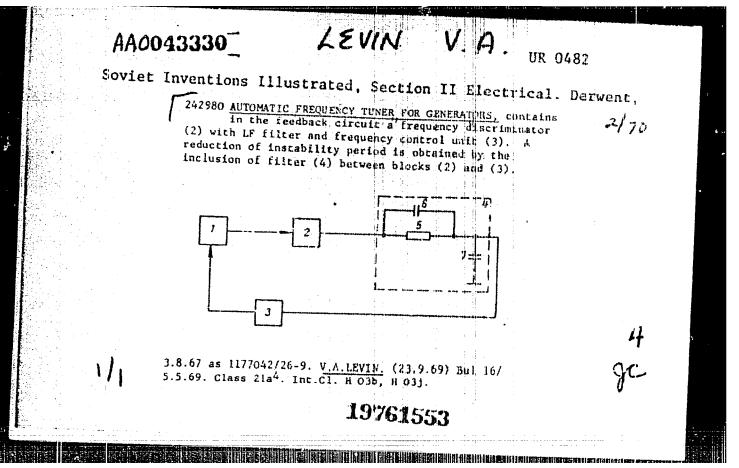
BARMIN, A.A., et al, Nauchn. tr. In-t mekh. Mosk un-ta, 1970, No 1, pp 63-87 (from RZh-Mekhanika, No 2, Feb 71, Abstract No 2311)

the transition through the magnetohydrodynamic detonation wave. Then, by using the concept that the flow behind the detonation wave close to the Chapman-Jougue wave is a traveling Riemann wave, the authors obtain an equation for £. The integration of this equation gives the asymptotic law for the behavior of the detonation wave and the asymptotic expressions for the parameters of the gas behind the wave. It is found that the asymptotic behavior of the magnetohydrodynamic detonation coincides with the asymptotic behavior of the plane supercompressed detonation wave in ordinary gas dynamics. Bibliography of 15, Yu. N. Denisov

2/2

Acc. Nr	.: <u>A</u> /	10045250 Ref. Code: UROO.	00
Levin	V. A.		
Stabili mnozhes	zation twa cha	of a Discrete Number of Frequencies (Stabilizatsiya diskretnogo astot) Moscow, Energiya, 1970, 326 pp (SL:1858)	
TABLE O	F CONTE	ANTS:	
Preface			3
Chapter		Fundamental Concepts Pedestal-Frequency Data Units	24
	III	Operation of Sum Circuits and Calculation of Combination Frequencies	109
	IA	Compensation Circuits	148
	V	Use of Automatic Frequency Control Systems for Stabilization of a Discrete Number of Frequencies	167
	ĀĪ	Basic Data on Operation of a System for Automatic Phase Control of Frequency	271
	VII	Block Diagrams of Stabilization Systems of a Discrete Number	003
		of Frequencies	297
Biblicg	raphy		321
1/		Ree1/Frame	4
سأأس		19780167	

AMI)045250


The book deals with the theory, design and use of stabilization systems of a discrete number of frequencies...

It was written for scientists and specialist in the field of radiocommunication, radio-navigation and radio-measurement techniques, as well as senior college students.

10

F

19780168

AUTHOR-LEVIN, V.A.

017

172

COUNTRY OF INFO--USSR

SOURCE--MEDITSINSKAYA RADIOLOGIYA, 1970, VOL 15, NR 6, PP 62-67

DATE PUBLISHED----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

ORGANISM IN DIAGNOSTIC USE OF RADIOIODINE +U-

TOPIC TAGS--DIAGNOSTIC METHODS, THYROID GLAND, RADIDACTIVE THACER, IGDINE

UNCLASSIFIED ...

TITLE--DETERMINATION OF THE RADIATION LOADING ON THE THYROTO GLAND AND

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3002/1518

STEP NO--UR/0241/70/015/006/0062/0067

PROCESSING DATE--1340V70

CIRC ACCESSION NO--AP0128913

UNCLASSIFIED

PROCESSING DATE--1340V70 UNCLASSIFIED 2/2 017 CIRC ACCESSION NO--APC128913 ABSTRACT. THE AUTHOR INVESTIGATED WITH THE ABSTRACT/EXTRACT--(U) GP-0-ALD OF RADIOIODINE 32 PERSONS WITH EUTHYROLD HORMONAL STATE, 41 PATIENTS WITH MILD THYROTOXICOSIS, 14 PATIENTS WITH THYROTOXICOSIS OF MODERATE SEVERITY AND 6 PATIENTS WITH HYPOTHYROSIS. THE AUTHOR ALSO DEFERMINED THE EFFECTIVE PERIODS OF RADIOIODINE SEMIEXCRETION FROM THE THYROLO GLAND AND PATIENT'S BODY, WHICH WERE USED FOR EVALUATION OF THE VALUE OF RADIUM LOADING. ACCORING TO THE DATA DERIVED THE MEAN ABSORBED DOSE IN THE THYROLO GLAND IN AUMINISTRATION OF 50 MU CHOP RADIOTEDINE COMPRISED 87 RAD FOR PATIENTS WITH EUTHYROID HORMONAL STATE, 124 RAD FOR PATIENTS WITH MILD THYROTOXICOSIS, 134 RAD FOR PATIENTS WITH THYROTOXICOSIS OF MODERATE SEVERITY AND 7 RAD FOR PERSONS WITH HYPOFUNCTION OF THE THYROTO GUAND. IN RADIODIAGNOSTIC INVESTIGATION OF THE THYROID GLAND THE INTEGRAL ABSORBED DOSE DID NOT EXCEED BUEGREES TO PRIMES R-RAD. FACILITY: KAFEDRA RENTGENOLOGII I RADIOLOGII I MUSKOVSKOGU MEDITSINSKOGO INSTITUTA IM. I. M. SECHENOVA. UNCLASSIFIED CERT DE PROPERTE NA CONTRACTOR DE LA LEGACION DE LA CONTRACTOR DE LA CONTR

Controls

USSR

upo 621.316.722.1(088.8)

LEVINA, G.V., LEVIN. Y.G.

"Voltage Regulator"

USSR Author's Certificate No 262997, filed 22 Apr 68, published 10 June 70 (from RZh-Elektronika i yeye primeneniye, No 1, January 1970, Abstract No 18467F)

Translation: A circuit is proposed for a voltage regulator with a series composite regulator transistor, a single-stage d-c amplifier, and a silicon stabilitron -- a source of reference voltage, in which a special circuit for supply of the amplifier transistor is used which assures an increase of stability without use of a supplementary source for supply of the amplifier. In accordance with the object of the invention, the d-c amplifier is supplied across a semiconductor and a supplementary filter capacitor from the common rectifier of the regulator to an inductive filter, by virtue of which the voltage for supply of the amplifier is found to be approximately 1.44 times more than the voltage for supply of the control transistor of the regulator. 1 ill. S.D.

1/1

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

aran erreta rantum sebuah dikadi dikuluk basuk manakan bandulah 14 datan 1914 ki kutaran dibuha beberah menter

USSR

UDC: 577.4

LEVIN, V. I.

"Reliability Synthesis of Automata With Limitation on the Number of Correcting Elements"

Riga, Teoriya konehcn. avtomatov i yeye pril.—sbornik (Theory of Finite Automata and its Applications—collection of works), vyp. 1, "Zinatne", 1973, pp 5-16 (from RZh-Matematika, No 10, Oct 73, abstract No 10V395 by N. Katerinochkina)

Abstract: Let there be L versions of an unreliable automaton with a single output operating in a two-valued alphabet. Further let there be an unlimited number of threshold elements with l inputs, where l < L. A threshold element, receiving l versions of an unreliable signal, produces the correct signal at the output if the number of erroneous inputs is less than some number a_0 , the error threshold. It is required on the basis of L available observations to construct a restoring unit from the threshold elements which gives the true value of the output signal of the automaton with a certain probability; the probability of the restoring error must not exceed a certain level, and the number of threshold elements is to be minimized. The article gives a solution of the formulated problem when a number of limitations are made on the 1/2

x acts an approximate processing the transfer in the contract of the contract

USSR

LEVIN, V. I., Teoriya konechn. avtomatov i yeye pril., vyp. 1, "Zinatne", 1973, pp 5-16

initial data. Levels of effectiveness of signal restoration are studied. An algorithm is presented for synthesizing a restoring unit.

2/2

- 2 -

LEVIN, V. I.

"Reliability Synthesis of Automata with Limitation on the Number of

Teoriya Konechn. Avtomatov i yeye Pril. [Theory of Finite Automata and Its Applications -- Collection of Works], No 1, Riga, Zinatne Press, 1973, pp 5-16 (Translated from Referativnyy Thurnal Kibernetika,

Translation: Suppose there are L versions of an unreliable automaton with one output, working in a two-character alphabet. Suppose also that there is a limited number of threshold elements (TE) with 1 inputs, where 1 < L. The TE, receiving 1 versions of the unreliable signal, outputs the correct signal if the number of false inputs is less than a certain number a , the error threshold. The requirement is to use

the available L observations to synthesize a restoration organ (RO) of TE which will output the true value of the output signal of the automaton with a certain probability, and the probability of restoration error must not be above a certain permissible level, while the number of TE used should be minimal. This article solves this problem with a number of limitations placed on the inital data. Conditions of effectiveness of signal restoration are studied. An algorithm for synthesis of RO is presented. N. Katerinochkina

1/1

UDC: 577.4

LEVIN, V. I.

"Infinite-Valued Logic and Transient Processes in Finite Automata"

Avtomatika i vychisl. tekhnuja (Automation and Computer Technology), 1972, No 6, pp 1-9 (from RZh-Kibernetika, No 5, May 73, abstract No 5V549 by N. Katerinochkina)

Translation: The author considers asynchronous finite automata without storage given by structural circuits in which there are no feedbacks. As component elements the circuits contain deterministic logic elements, pure delay elements and filters. Methods of studying transient processes in such automata are proposed which use the concepts of infinite-valued logic.

1/1

- 53 -

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

USSR

LEVIN

UDC: 8.74

"Accuracy and Reliability of an n-Place Binary Counter With Ripple-Through Carry"

Riga, Vopr. sinteza konechn. avtomatov--sbornik (Problems of Synthesizing Finite Automata--collection of works), "Zinatne", 1972, 10V613 [author's résumé])

Translation: The distribution and statistical characteristics of error in a counter with ripple-through carry are derived for the case of random errors of elements. The probability of true readings of a counter is established as well as the perments).

1/1

UDC 615.849.2+616-073.916:546.79

BOCHKAREV, V. V., LEVIN, V. I., STANKO, V. I., SEDOV, V. V., KHARLAMOV, V. T., KOZLOVA, M. D., and TARASOV, N. F., Institute of Biophysics, Ministry of

"New Radiopharmaceuticals and Prospects for Their Clinical Use"

Moscow, Meditsinskaya Radiologiya, No 1, 1972, pp 4-12

Abstract: Description of the methods of preparation and most important properties of some recent Soviet-developed radioactive drugs based on relatively short-lived isotopes: (a) Inlll preparations for liver (colloidal solution) and kidney (citrate complex) scanning; (b) iodobenzoic acid with I131 to study liver detoxification function; (c) colloidal solution of Pd103 for prolonged and uniform preoperative irradiation of tumors of different sites and sizes; (d) combined oleophilic preparations with different isotopes (Y90, In111, Pd103, Au 198) for local irradiation of lymph nodes; (e) X-ray contrast media, iodoethical and iodolinethol, to visualize lymph nodes; (f) resorptive beta applicator with Y90 for the treatment of eye tumors (clinical trials of the applicator in a group of patients with melanoblastomas showed complete or partial resorption of the tumor and no recurrences during the observation period (6 months to 2 years). Improvement in the technology of preparing two important

BOCHKAREV, V. V., et al., Meditsinskaya Radiologiya, No. 1, 1972, pp 4-12

diagnostic agents containing I^{131} albumin macroaggregates (used for scanning in many lung diseases) and polyvinylpyrrolidone (used in the diagnosis of exudative enteropathy and other diseases) has resulted in marked enhancement of their quality.

2/2

- 30 -

USSR

UDC: 519.24

LEVEN, V. I.

"The Method of Matrix Expansions in the Investigation of Extremum Systems"

V sb. Zadachi statist. optimizatsii (Problems of Statistical Optimization --collection of works), Riga, "Zinatne", 1971, pp 97-106 (from RZh-Kiternetika, No 12, Dec 71, Abstract No 12V404)

Translation: It is shown that the procedure of expanding a matrix product in a series is applicable to step-by-step extremum systems functioning in the presence of weak interference. Author's abstract.

1/1

USSR

UDC: 51.621.391

LEVIII, V. I.

"Probabilistic Methods of Studying the Reliability of Finite Automata"

V sb. Veroyatnostn. avtomaty i ikh primeneniye (Probabilistic Automata and Their Use-collection of works), Riga, "Zinatne", 1971, pp 181-199 (from RZh-Kibernetika, No 9, Sep 71, Abstract No 9V416)

Translation: A survey of papers on the probabilistic analysis of the reliability of finite automata.

1/1

are considered the considered and the construction of the construc

1/2 TITLE--CHEMISTRY OF LONG LIFE FISSION PRODUCT ELEMENTS -U-AUTHOR-(05)-SINITSYN, N.M., KORPUSOV, G.V., ZAYTSEV, L.M., LEVIN, V.I., PROCESSING DATE--230CT70 COUNTRY OF INFO--USSR SOURCE--MOSCOW, ATOMIZDAT, 1970, 324 PP **计数据存储机构 电多效和线线 医多次性成功性 最** DATE PUBL ISHED----70 SUBJECT AREAS--CHEMISTRY TOPIC TAGS--NUCLEAR FUEL CYCLE, NUCLEAR FUEL REPROCESSING, FISSION CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1998/1422 STEP NO--UR/0000/70/000/000/0001/0324 CIRC ACCESSION NO--AMOL21888 UNCLASSIFIED

PROCESSING DATE--230CT70 UNCLASSIFIED 2/2 015 CIRC ACCESSION NO--AMO121888 INTRODUCTION 4. ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. PREFACE 3. CHAPTER I TECHNOLOGY IN PROCESSING OF NUCLEAR FUEL 12. 11 CESIUM 49. THE STRONTIUM 80. IV RARE EARTH ELEMENTS 111. V ZIRCONIUM AND NIOBIUM 180. VI RUTHENIUM 243. VII TECHNETIUM 282. VIII REPROCESSING OF WASTE WHICH CONTAINS FISSION PRODUCTS 296. THE BOOK DEALS WITH THE PRESENT STATE OF CHEMISTRY OF BASIC RADIDACTIVE LONG LIFE ELEMENTS FORMING DURING FISSION OF NUCLEAR FUEL. THE BOOK WAS WRITTEN FOR SCIENTISTS AND ENGINEERS WORKING IN THE FIELD OF RADIOCHEMICAL TECHNOLOGY. IT CAN BE RECOMMENDED ALSO AS A TEXTBOOK TO COLLEGE AND POST GRADUATE STUDENTS OF RADIOCHEMISTRY. UNCLASSIFIED

_UDC 681.325.6-525

LEVIN, V. I., Scientific Research Institute of Heat and Power Engineering Equipment

"A Pneumatic Logic Element"

Moscow, Otkrytiya, Izobreteniya, Promychlennyye Obraztsy, Tovarnyye Znaki, No 16, 1970, Author's Certificate No 270344, filed 2 Feb 66, p 112

Abstract: This Author's Certificate introduces a pneumatic logic element which contains two chambers, each of them having an input channel, loose discs located in the chambers, a loose rod located in a channel which connects the chambers and is connected to the output channel, and a groove in one of the chambers which connects it to the output channel no matter what position the disc is in. As a distinguishing feature of the patent, the functional possibilities of the logic element are extended by making an annular recess which is connected to an additional input channel in the chamber with no groove.

1/1

UNCLASSIFIED PROCESSING DATE--300CT70

I/2 025

TITLE-ANALYSIS OF LOGICAL SCHEMES WITH HIGHLY RELIABLE ELEMENTS -U
AUTHOR--LEVIN, V.I.

COUNTRY OF INFO-USSR

SOURCE-AVTOMATIKA I TELEMEKHANIKA, 1970, NR 6, PP 110-11

DATE PUBLISHED----70

SUBJECT AREAS--ELECTRONICS AND ELECTRICAL ENGR.

TOPIC TAGS--CEMPUTER LOGIC, SIGNAL ELEMENT, SIGNAL INTERFERENCE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/1340

STEP NO--UR/0103/70/000/006/0110/0117

CIRC ACCESSION NO-APO124990

UNCLASSIFIED

2/2 025 IRC ACCESSICN NOAP BSTRACT/EXTRACT	GP-O- ABSTRACT. PPUTS AND ELEMENTS (1 YIELDS)) AND (THE PRUBABILITY OF	FOR THE LIPOSSESSING O YIELDS 1 TO BIAINING	JGICAL SCHEME RANDOM HAROL), THERE IS E A PROPER SIGN	PRESENTED (A) SNAL AT THE BABILITIES OF
TLE	: CHELLER HINE 15 HOSEL	4 1 1 1 1 1 L L L L	A Contact of the cont	IF THE SOUGHT
FOR CHARACTERISTICS	S AND ON THE PRINCE	PLE DE SOF	ENFOSTITORY	
effective in the second of the				
			. 4	
	•			
			i i i i i i i i i i i i i i i i i i i	
		•		

USSR

UDC 577.4

LEVIN. V. I.

"Calculating the Probability of Correct Operation of an Automaton with Possible Failures"

V sb. Vopr. sinteza konechn. avtomatov (Problems of Synthesizing Finite Automata -- collection of works), Riga, Zinatna Press, 1972, pp 109-116 (from RZh-Kibernetika, No 9, Sep 72, Abstract No 9V423)

No abstract

1/1

- 28 -

VORONOVITSKIY, M. M., GLUZBERG, G. YE, and LEVIN, V. L.

"Infinite-Dimensional Analogues of the Problem of Linear Programming and a Theorem on a Saddle Point"

Teoriya Igr [Games Theory -- Collection of Works], Yerevan, 1973, p 116 (Translated from Referativnyy Zhurnal Kibernetika, No 10, 1973, Abstract No 10V494)

Trnaslation: Suppose X and Y are real, distinguishable, locally convex spaces, K_{x} and K_{y} are closed convex cones in them and A is a continuous linear mapping. The following problem is studied: minimize

 $f(x) \tag{1}$

under the conditions

 $Ax \ge y_0, x \ge 0, \tag{2}$

where f X, y_0 Y.

Theorem. Suppose: 1) any non-negative linear functional in Y is continuous, 2) for any y Y we can find vector $x \ge 0$ and number λ such that $y \le Ax + \lambda y_0$. Then, the saddle point theorem is correct for problems (1) and (2).

LEVIN, V. M., CHERNOZATONSKIY, L. A.

"Sound Instabilities in Semiconductors in a High-Frequency Electric Field"

Leningrad, Fizika Tverdogo Tela, Vol 15, No 4, 1973, pp 1243-1245

Abstract: A study was made of the parametric sound effects in a semiconductor in an AC field with a high-frequency component: $E(t) = E_0 + E_1 \cos \Omega t$ for $\Omega \sim \omega_{\alpha} > \nu_{\alpha}/\bar{\lambda}$, where $\omega_{\alpha} = q \nu_{\alpha}$ is the sound frequency, $\bar{\lambda} = \nu_{T}/\nu$, ν_{T} and ν are the thermal velocity and the collision frequency of the current carriers. Here, the free path length $\bar{\lambda}$ is greater than the sonic wavelength $(q\bar{\lambda} >> 1)$, and the formation of the forced electron density wave takes place as a result of movement of individual electrons in a nonuniform electric field E (r, t) accompanying the sound vibration. The plasma subsystem is described on the basis of the kinetic Boltzman equation for the carrier distribution function. The carrier dispersion is considered by the collision integral in the T-approximation [H. N. Spector, Phys. Rev., No 165, 562, 1968]. The effects arising are analyzed for a semiconductor with a piezobond. The calculations can be generalized to the case of the electron-phonon interaction in terms of the deformation potential.

IRC ACCESSION NOAMOILO369 UNCLAS	SIFIED	
DCUMENT CLASSUNCLASSIFIED ROXY REEL/FRAME1991/0576	STEP NOUR/0000/70/000/000/0001/0222	
CNTRUL MARKINGNO RESTRICTIONS		-
Seminar • Francisco de la Companya del Companya de la Companya del Companya de la		
DPIC TAGSFREQUENCY CONTRUL, FO EQUIPMENT, DESIGN BUREAU, INDUS	ERROMAGNETIC STRUCTURE, ELECTRONIC STRIAL AUTOMATION	
MARINE ENGR	THE THE STRUCTURE OF FIRETRONIC	
WALLEST ACEAS ELECTRONICS AND EL	LECTRICAL ENGR., MECH., IND., CIVIL AND	
ATE PUBLISHED70		
INSTRUMENTS. CHASTOTNU PERKUUTI	SYSTEM OF CONTROL AND REGULATION NAMICHESKAYA SISTEMA PROBORDY KONTROLYA I	
OUNTRY OF INFOUSSR	AND REGULATION	
FEVIN. V.M.		
UTHUR- (05) - DIDENKO, K.I., BRAUDE	. V.A., GAFAROVICH, M.D., ZAGARIY, S.I.,	
ITEL - A FREQUENCY PARKOTANTO	TAGASIYA GALA	
72 020 UVCL	ASSIFTED PROCESSING DATE027CT70 YSTEM OF CONTROL AND REGULATION	

كالترجيس والمناطر في مرجوب والماريّ إلى إن الكائنية بالكرام التروي والمراجعة المنا

PROCESSING DATE--020CT70 UNCLASSIFIED -020 IRC ACCESSION NO--AMOI10369 CHAPTER I THE ABSTRACT. PREFACE BSTRACT/EXTRACT--(U) GP-0-COMPOSITION AND STRUCTURE OF A COMPLEX OF FREQUENCY FERRODYNAMIC II UNIFIED NODES: UNITS AND ELEMENTS 14: PRIMARY MEASURING INSTRUMENTS AND COMPLEXES 100. IV SECONDARY REGULATORS AND AUXILIARY INSTRUMENTS AND MECHANISMS 169. ٧ EXAMINED ARE COMPOSITION, MECHANISMS 207. LITERATURE 221. STRUCTURE, PRINCIPLES OF DESIGN AND BASIC TECHNICAL CHARACTERISTICS OF A COMPLEX OF EQUIPMENT DESIGNED AT THE SPECIAL CONSTRUCTION BUREAU OF SYSTEMS OF AUTOMATIC CONTROL IN KHAR KOV FOR THE CONSTRUCTION OF VARIOUS AUTOMIZED SYSTEMS OF CONTROL AND REGULATION IN VARIOUS BRANCHES OF THE BOOK IS FOR SPECIALISTS IN THE FIELD OF AUTOMATION OF A PRODUCTION DESIGNING SYSTEMS OF AUTOMATION IN THEIR INDUSTRIAL OPERATION.

und 519.33+519.272

ake hat han han and the har har har life in the material half that it make the telephone and the state of the h

ARKIN, V. I., LEVIN, V. L., Central Mathematical Economics Institute, Academy of Sciences of the USSR, Moscow

"Variational Problem With Functions of Several Variables and Operator Limitations: Principle of the Maximum and Theorem of Existence"

Moscow, DAN SSSR, 1971, vol 200, No 1, Sep 71, pp 9-12

Abstract: The following variational problem is considered. It is required to maximize the functional

$$\Phi\left(\bar{u}\right) = \int_{0}^{1} \int_{0}^{1} c\left(x, y, u\left(x, y\right)\right) dx dy$$

assuming the limitations

$$\int_{a}^{1} f(x, y, u(x, y)) dy = 0;$$

1/2

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

ARKIN, V. I., LEVIN, V. L., DAN SSSR, vol 200, No 1, Sep 71, pp 9-12 $\int_{1}^{1} g(x, y, u(x, y)) dx = 0;$

the mapping $\bar{u}=u\left(z,y\right) :K\rightarrow U$ is measurable and

 $u(x, y) \in U(x, y)$

for nearly all $(x, y) \in K$ where $K = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1\}$, U is a complete, separable metric space. A necessary and sufficient condition of optimality is established in the form of the principle of the maximum, and a theorem of existence of the extremum is formulated. Bibliography of nine titles.

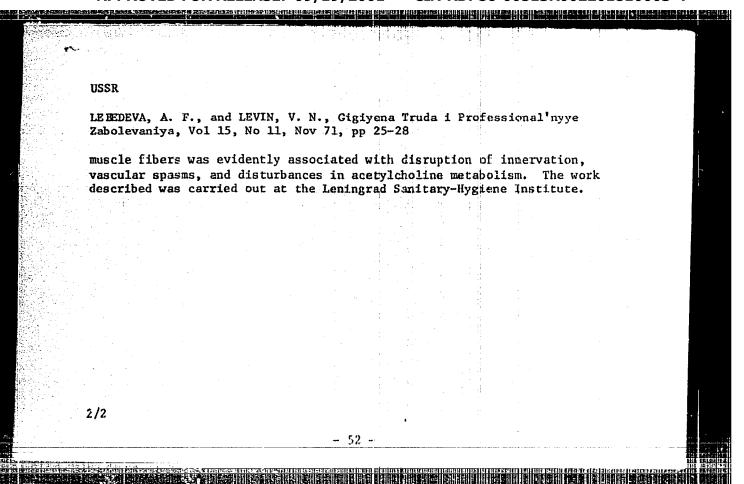
2/2

- 5 -

Public Health, Hygiene and Sanitation

USSR

UDC 616.74-001.34-091


LEBEDEVA, A. F. and LEVIN, V. N., Institute of Physical Culture imeni P. F. Lesgait

"Pathomorphological Changes in the Skeletal Muscles of Animals Exposed to Vibration"

Moscow, Gigiyena Truda i Professional'nyye Zabolevaniya, Vol 15, No 11, Nov 71, pp 25-28

Abstract: A morphological study of skeletal muscles was carried out on 30 rats that had been subjected to vibrations with a frequency of 50 cycles and an amplitude of 0.6-0.8 mm 5 hrs per day for 3 mos. Structural changes in the muscles were observed, which were more pronounced in the legs than in the back. Changes involved local separation, rupture, and dystrophy of muscle fibers, complete lysis of some fiber bundles, and degeneration of cell nuclei. Proliferation of connective tissue in damaged sections took piace. Similar changes were observed in the muscles of rats subjected to intensive physical stresses for periods up to 1 yr. There was a decrease in the content of DNA in nuclei and of RNA in the cytoplasm as compared with controls. The content of total proteins in the muscles was reduced and there was also a decrease, although slight, in the content of glycogen in them. The degeneration of 1/2

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

USSR

LEVIN, V. R.

"Asymptotically Optimal Algorithms for Detection of Signals against a Background of Noise (Review)

Tr. Sib. fiz.-tekhn. in-ta pri Tomsk. un-te [Works of Siberian Institute of Physics and Technology of Tomsk University], 1973, No. 63, pp 6-48 (Translated from Referativnyy Zhurnal - Kibernetika, No. 8, 1973, Abstract No. 8 V231 by D. Chibisov)

Translation: A review on aysmptotic methods in statistical radio engineering. The approach of La Kam is presented, based on concepts of contiguality and asymptotic sufficiency. Results produced on this basis for a number of specific models are presented. Problems are studied in which the distribution of noise is not fully known, both in the parametric and the nonparametric statement.

1/1

- 32 -

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

USSR

BOBKOLSKIY, V. N., DERGUNOVA, V. S., IVANOVA, T. N., KOSTIKOV, V. I., LEVIN, V. Ya., TARABANOV, A. S.

"Contact Interaction of Melts in the System Silicon-Niobium with Carbon Materials"

Konstrukts. Materialy na Osnove Grafita [Graphite-Based Structural Materials -- Collection of Works], No 6, Moscow, Metallurgiya Press, 1971, pp 109-115 (Translated from Referativnyy Zhurnal, Khimiya, No 2, 1972, Abstract No 2 B1358 from the Resume).

Translation: The wetting of pyrographite (I), vitreous carbon (II) and graphite (III) by melts in the silicon-niobium system, produced by double arc remelting in purified argon is studied. The final contact wetting angle on porous (III) is equal to zero, on pore-free (I) and (II) it is greater than zero. It is established that the chemical activity of these materials in relationship to melts in the system Si-Nb increases in the sequence: I, II, III.

1/1

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

WC 546.25+66.022.4

USSR

YELYUTIN, V. P., ANIKEYEV, YE. F., KOSTIKOV, V. I., and LEVIN, V. YA., Hoscow Institute of Steels and Alloys

"Impregnation of Compact Graphites With Helts of the System Silicon-Zirconiul"

Moscow, Khimiya Tverdogo Topliva, No 1, Jan/Feb 71, pp 147-153

Abstract: The mechanism of impregnating graphites of the EPG (expansion unknown) class with liquid silicon had been studied previously. A dense composition of the type graphite-silicon — carbide-silicon could be obtained in this way if one worked in oxidizing media and the temperature did not exceed the melting point of silicon; pure silicon always remained in the graphite pores. To avoid this disadvantage, alloys of silicon with some active element, which can interact with silicon and graphite, were used. In this case, it was found to be possible to bond the excess billicon which had not been changed into silicon-carbide, into some silicide. Two alloys were used in this study: Si+10% Zr and Si+ 25% Zr. The graphite sample was added to the respective melt in a corundum-lined crucible and kept in contact for the required time period. After the experiment, the Zr and Al contents in the melt were determined. It was found that the Zr staged practically unchanged. The Al content in the melts did not exceed 0.1%. The impregnative

USSR

YELYUTIN, V. P., et al., Khimiya Tverdogo Topliva, No 1, Jan/Feb 71, pp 147-153

tuon process could be divided into two parts: during the initial part (0-50 sec.), the impregnation depth depends on the square root of the time. With longer interaction times, i.e., t > 50 sec., surface diffusion of the with longer interaction times, i.e., t > 50 sec., surface diffusion of the atoms along the pore walls takes place. The mass transfer process was found to be described where t is the time and a and c are constants. Constants a and c as well as the rate of the impregnation process were calculated for three different MPG graphites at three different temperatures (1410, 1450, three different MPG graphites at three different to be correct to consider the impregnation of graphite by the melts as a wetting process over the walls of the pores.

2/2

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

- 25 -

Graphite

USSR

WDC: 546.96-162

YELYUFIN, V.P., KOSTIKOV, V.I., LEVIN V. YA Moscow Institute of Steel and Alloys Moscow, Ministry of Higher and Secondary Specialized Education REFER

"Combined Coatings on Graphite"

Moscow, Neorganicheskiye Materialy, Vol 6, No 3, 1970, pp 414-417

Abstract: Protective coatings of alloys in the system Si-Zr on graphite were studied. Three types of graphites were used and the alloys included pure Si, Si+5, 10, 20 and 25% Zr. Flowability and flow-kinetics, the degree of saturation, and the structure of the coatings produced were studied. The coatings are not protective without subsequent roasting and diffusion roasting leads to the formation of a combined SiC + ZrC + SixZry coating on compact graphites and a carbide coating on porous graphites.

1/1

UNCLASSIFIED

PROCESSING DATE--230CT70

TITLE--COMPOSITE COATINGS ON GRAPHITE -U-

AUTHOR-(03)-YELYUTIN, V.P., KOSTIKOV, V.I., LEVIN, V.YA.

COUNTRY OF INFO--USSR

SOURCE--IZV. AKAD. NAUK SSSR, NEORG. HATER. 1970, 613), 414-17

DATE PUBLISHED ----- 70

SUBJECT AREAS -- MATERIALS

TOPIC TAGS--POROSITY, GRAPHITE, PROTECTIVE COATING, COMPOSITE MATERIAL, SILICON ALLOY, ZIRCONIUM ALLOY, CARBIDE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1993/0705

STEP NO--UR/0363/70/006/003/0414/0417

CIRC ACCESSION NO--APO113569

UNCLASSIFIED

PROCESSING DATE--250CT70 UNCLASSIFIED 047 2/2 CIRC ACCESSION NO--APOL13569 THE POSSIBILITY OF PREPG. ABSTRACT. ABSTRACT/EXTRACT--(U) GP-0-PROTECTIVE COATINGS ON GRAPHITE FROM ALLOYS OF THE SI-ZR SYSTEM WAS THREE BRANDS OF GRAPHITE WERE STUDIED. ALLOYS OF SI WITH 0, 5, 10, 20, OR 25PERCENT ZR WERE INVESTIGATED. THE ALLOYS WERE PREPD. BY DOUBLE ARC MELTING IN AN AR ATM. FROM 99.99PERCENT PURE SI AND THE COATING WAS APPLIED IN 2 STAGES. THE FROM IDDIDE ZR. SPREADABILITY, THE KINETICS OF SPREADING, AND THE IMPREGNATION OF GRAPHITES OF VARIOUS D. BY LIQ. ALLOYS OF THE SI-ZR SYSTEM WERE STUDIED. THE COATINGS APPLIED ONTO GRAPHITE FROM LIQ. SI-ZR ALLOYS WITHOUT THE DIFFUSION ANNEALING RESULTS SUBSEQUENT ANNEALING ARE NOT PROTECTIVE. IN THE FORMATION OF A COMPOSITE SIC PLUS ZRC PLUS SI SUBX ZR SUBY COATING ON DENSE GRAPHITES AND OF A CARBIDE (SIC PLUS ZRC) COATING ON MOSK. INST. STALI SPLAVOV. MOSCOW, FACILITY: POROUS GRAPHITES. USSR.

UNCLASSIFIED

"APPROVED FOR RELEASE: 09/19/2001 CIA-RI

CIA-RDP86-00513R002201810003-4

USSR

UDC 549.212+66.01

ANIKEYEV, YE. F., KOSTIKOV, V. I., LEVIN, W. YA., and IEYDERMAN, G. M., Moscow Institute of Steel and Alloys, Moscow, Ministry of Higher and Secondary Specialized Education RSFSR

"Mechanism of Liquid Silicon Empregnation of Graphite"

Moscow, Khimiya Tverdogo Topliva, No 4, 1970, pp 143-146

Abstract: A study was made of impregnation of dense graphites MTG-5, MTG-6, and MTG-8 (porosity of 12, 15, and 20%, respectively) with liquid silicon in the 1410-1550° temperature range. The mass transfer process can be divided into two states: viscid flow of liquid silicon along graphite pores (0.50 seconds) with 11.5-14.2 viscid flow of activation and superficial diffusion of silicon along walls of graphite pores (50-180 seconds) with 45.0-53.2 kcal/mole energy of activation.

1/1

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

PROCESSING DATE--04DEC70 UNCLASSIFIED

TITLE--SURFACE TENSION AND DENSITY OF MELTS IN THE SILICON ZIRCONIUM

SYSTEM -U-

AUTHOR-103)-YELYUTIN, V.P., KOSTIKOV, V.I., LEVIN, V.YA.

COUNTRY OF INFO--USSR

SDURCE-- [ZVEST. V. U. Z. TSVETNAYA MET., 1970, (2), 131-133

DATE PUBLISHED----70

SUBJECT AREAS--MATERIALS

TOPIC TAGS--SURFACE TENSION. THERMAL EFFECT, ZIRCONIUM ALLOY, SILICON ALLOY, ISOTHERM, SPECIFIC DENSITY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3003/1501

STEP NO--UR/0149/70/000/002/0131/0133

CIRC ACCESSION NO--AT0130430

UNCLASSIFIED

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

্ল PROCESSING DATE--04DEC70 UNCLASSIFIED 020 2/2 CIRC ACCESSION NO--AT0130430 ABSTRACT. THE SURFACE TENSION AND DENSITY OF ABSTRACT/EXTRACT--(U) GP-0-MELTS OF THE SI-ZR SYSTEM CONTG. ZR UP TO BOPERCENT WERE STUDIED AT TEMP. UP TO 1500DEGREESC. THE TEMP. COEFF. OF THE DENSITY OF THE ALLOYS WAS CONSIDERABLY GREATER THAN THAT OF PURE SI AND INCREASED WITH INCREASING PROPORTION OF ZR IN THE MELT. THE SURFACE TENSION ISOTHERM AT 1500DEGREESC DIFFERED FUNDAMENTALLY FROM THAT CHARACTERIZING THE SI-TI SYSTEM: BEING RATHER CLOSER TO THAT EXPECTED FOR IDEAL SOLUTIONS. MELTS CONTG. ZR OVER 25PERCENT EXHIBITED HICRO INHOMOGENEITIES. UNCLASSIFIED

UNCLASSIFIED
PROCESSING DATE--13NOV70
EITLE--SURFACE TENSION AND DENSITY OF SILICON TITANIUM MELTS -UAUTHOR-(03)-YELYUTIN, V.P., KOSTIKOV, V.I., LEVIN, V.YA.
CCUNTRY OF INFO--USSR
SOURCE--IZVEST, V.U.Z., TSVETNAYA HET., 1970, (1), 53-55

DATE PUBLISHED-----70

SUBJECT AREAS--MATERIALS
TOPIC TAGS--SURFACE TENSION, SILICON ALLOY, TITANIUM ALLOY, LIQUID METAL, CHEMICAL REACTION, SPECIFIC DENSITY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED
PROXY REEL/FRAME--2000/0551

STEP NO--UR/0149/70/000/001/0053/0055

CIRC ACCESSION NO--AP01242466
UNCLASSIFIED

SI, TI MELTS CONTG. U DEGREESC. THE SURFAC	24246 P-O- ABSTRACT. THE SURI P TO ZOPERCENT TI WERE S E TENSION ROSE WITH TI CO	SOG DEGREESC. CHEMICAL
INTERACTION BETWEEN T	FFECT ON PURELY SURFACE PERCENT TI WAS 2.75 G-CM	PROPERTIES. THE DENSITY
	UNCLASSIFIED	

UDC 547.241

LEVIN, Ya. A., GILYAZOV, M. M., and BABKINA, E. I., Institute of Organic and Physical Chemistry imeni A. Ye. Arbuzov, Kazan' Branch of the Academy of Sciences USSR, and the Branch of the Scientific Physical Chemical Research Institute imeni L. Ya. Karpov

"Cyclohexyl- β -chloroethylphosphinic Acid and Its Derivatives"

Leningrad, Zhurnal Obshchey Khimii, Vol 43 (105), No 12, Dec 73, p 2786

Abstract: Reaction of cyclohexyldichlorophosphine with ethylene oxide in ether at 0° gives a quantitative yield of di- β -chloroethylcyclohexylphosphonite, n20 1.5055, d20 1.2280, which rearranges after heating to the β -chloroethylester of cyclohexyl- β -chloroethylphosphinic acid, b.p. 138-140/0.02 mm, n20 1.5090, d20 1.2400. The latter treated with PCl5 yields cyclohexyl- β -chloroethylchlorophosphinate, b.p. 109-110°/0.03 mm, n20 1.5175, d20 1.2500 which can be hydrolyzed to cyclohexyl- β -chloroethylphosphinic acid, m.p. 50-52°.

1/1

USSR

IDC 541.641547.341

IEVIN. YA. A., PYRKIN, R. I., YAGFAROVA, T. A., and USOL'TSEVA, A. A., Institute of Organic and Physical Chemistry imeni A. Ye. Arbuzov, Academy of Sciences USSR

"The Polymers and Copolymers of Divinylphosphinates"

Moscow, Vysokomolekulyarnyye Soyedineniya, Vol 15 (A), No 9, Sep 73, pp 2070-2074

Abstract: The radical-chain block polymerization of derivatives of divinyl-phosphinic acid $(CH_2-CH)_2P(=0)X$ (I; X = OMe, OEt, OPr, OPh, OC₈H₁₇, OCH₂CH₂ CH₂Cl, OCH₂CH₂Pr, NEt₂) in the presence of azoisobutyric acid resulted in the formation of polymers with a tridimensional network, the properties of which ranged from those of elastomers to those of solids. Polymerization of I (X = OEt) in benzene resulted in the formation of a polymer with a tridimensional network, while that in EtOH led to a soluble cyclolinear oligomer. In the Copolymerization of I (X = OEt) with styrene or methyl methacrylate, I (X = OEt) was less reactive than the monomer that did not contain P, so that tridimensional and soluble polymers formed which contained less P in relation to sytrene or methyl methacrylate than the initial monomer mixture.

UDC 547.341

USSR

PYRKIN, R. I., LEVIN, Ya. A., and GOL'DFARB, E. I., Institute of Organic and Physical Chemistry Imeni A. Ye. Arbuzov, Kazan' Branch of the Academy of Sciences, USSR

"Reactions in the System C2H4-PBr3-A1Br3"

Leningrad, Zhurnal Obshchey Khimii, Vol 43 (105), No 8, Aug 73, pp 1705-1713

Abstract: A complex of reactions in the system C₂H₄-PBr₃-AlBr₃ leads to the final products including β-bromoethyldibromophosphine, tetrabromophosphine, and a complex of bis-β-bromoethyltribromophosphorane. A reaction sequence is proposed which includes an electrophilic attack by a bromine atom of the ethylene at the positively charged phosphorus atom of the complex BrCH₂CH₂+PBr₃BrP-AlBr₃, which forms as a result of a nucleophilic attack of PBr on the α-carbon atom of the complex BrCH₂CH₂PBr₂-AlBr₃. Ethylene enters the BrCH₂CH₂PBr+Al-Br₄ complex at the P-Br bcnd. Synthesis of bis-β-bromoethylphosphinic acid and its esters was developed, based on the hydrolysis or alcoholysis of the complex (BrCH₂CH₂)₂PBr₂-AlBr₄ forming directly in the system C₂H₄-PBr₃-AlBr₃.

1/1

TU -

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

WDC 547.341.26'11B.07

PYRKIN, R. I., and LEVIN, YA. A., Order of the Red Labor Emblem Institute of Organic and Physical Chemistry imeni A. Ye. Arbuzova

"Process for the Preparation of Alkyl Esters of β -Bromoethylalkylphosphonous Acid"

USSR Author's Certificate No 362023, filed 24 Mar 71, published 13 Dec 72 (from Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 2, 1973, p 54)

Translation: This process is improved in that the bromoethyldibromophosphine reacts with the brominated alkyls in the presence of aluminum bromide with subsequent treatment of the generated complex with alcohol. The desired product is separated by known methods.

2. The process described in number 1 is improved in that the reaction

2. The process described in number 1 is improved in that the reaction generating the complex occurs in an environment of inert organic solvents, for example; cyclohexane.

1/1

- 24 -

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

USSR

WG 547.241+547.341

MAGDEYEV, I. M., LEVIN, YA. A., and IVANOV, B. YE., Institute of Organic and Physical Chemistry Imeni A. Ye. Arbuzova, Academy of Sciences USSR

"The Product of the Reaction of Diphenylphosphinous Acid and Its Chloro-anhydride with ρ -Benzoquinone"

Leningrad, Zhurnal Obshchey Khimii, Vol 42(104), Vyp 11, 1972, pp 2415-2418

Abstract: The title reaction using the acid may proceed via two paths

The reaction generating I proceeds rapidly and almost quantitatively to form 1:1 adduct in a benzene solution in the absence of a catalyst. This reaction may also proceed generating product II by attack on the oxygen. 1/2

MACDEYEV, I. M., et al., Zhurnal Obshchey Khimii, Vol 42(104), Vyp 11, 1972, pp 2415-418

The ether II may also be prepared by the following reaction starting with the anhydride:

Two additional compounds (III) and (IV) were prepared from compounds I and II respectively., by treatment with PhCOCl and triethylamine. Structures were confirmed by IR spectra. Preparation, compositional and physical data are given for the above four compounds.

2/2

- 17 -

UDC 547.341

CALEYEV, V. S., and LEVIN, YA. A.

" \(\beta\) -Chloroethyl and Some Unsaturated Derivatives of \(\beta\) -Styrylphosphonic, -thiophosphonic, and -phosphonous Acids"

Leningrad, Zhurnal Obshchey Khimii, Vol 42(104), No 8, 1972, pp 1714-1720

Abstract: Syntheses are described for the title compounds based on the monostyrylation of PCl₅. Ten compounds were prepared having the general formula

for 13 and R' representing such groups as OC_2H_5 , $OCH=CH_4$, $CH_2CH=CH_2$, CCH_2CH_2CI , and CH_2CH_2CI , CCH_2CH_2CI , where R represents $OCH_2CH=CH_2$, and OCH_2CH_2CI and $StPS(R_2)$, where R represents $OCH_2CH=CH_2$, and OCH_2CH_2CI and OCH_2CI and OCH_2CH_2CI and OCH_2CI and OCH_2C

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

wa 661.718.1+546.183.131+549.455+547.313.2

LEVIN, YA. A., and PYRKIN, R. I.

"Products of the Interaction of Ethylene with the Phosphorus Trichloride and Aluminum Chloride System and Some Transformations of Them!"

Leningrad, Zhurnal Obshchey Khimii, Vol XIIII (CV), No 1, 1973, pp 77-82

Abstract: In connection with certain stated contradictions /A. I. Titov, et al., DAN SSSR, No 159, 1964; L. Maier, Helv. Chim, acta, No 52, 1337, 1969/and studies made of the reactions in the system made up of etheylene, aluminum halides and a compound with phosphorus-halide bond / Y. A. Levin, et al., Materialy dokladov nauchnoy konferentsii IOFKh, Kazan', 30, 1968/resulting in a number of new types of organophosphorus compounds / Ya. A Levin, et al., USSR Author's Certificate No 258306, Byull. izobr., No 1, 1970/, some results are presented from studies of the interaction im the C2H4-PCl3-AlCl3 system. The reactions in this system lead to free / -chloroethyleichloro phosphine and a mixture of complexes on alcoholysis of which, diethyl phosphite, the monoethyl ester of / -chloroethyl phosphonic acid and bis- / -chloroethyl phosphonous acid are formed. A study was made of the transformations of / -chloroethyldichloro phosphine and bis- / -chloroethylphosphonous acid establishing the genetic relations of the compounds to one and two / -chloroethyl groups on the phosphorus atom.

UDC 547.341.07

USSR

LEVIN, Y. A., and PYRKIN, R. I., Institute of Organic and Physical Chemistry Imeni A. Ye. Arbuzov, Academy of Sciences USSR

"Derivatives of Divinylphosphinic Acid"

Leningrad, Zhurnal Obshchey Khimii, Vol 43 (105), No 3, Mar 73, pp 578-581

Abstract: Reactions of divinylchlorophosphinate with alcohols, phenol, butyl mercaptan and diethylamine in presence of triethylamine yield esters, a thioester and an amide of divinylphosphinic acid. It is possible to combine the substitution of a chlorine atom by an alkoxyl group and dehydrobromination of bis-β-bromoethylphosphinic acid choride into one reaction, yielding divinylphosphinates, by heating the reaction mixture to 70°; otherwise the principal product is an ester of vinyl-β-bromethylphosphinic acid. Hydrolysis of the ethyldivinylphosphinate with aqueous solutions of sodium carbonate yields the sodium salt of divinylphosphinic acid. The ease of dehydrobromination depends on the substituents of the phosphorus atom.

1/1

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

UDC 547.341

GALEYEV. V. S., and LEVIN, YA. A.

"Some Conversions of Products of Di- and Tristyrylation of Phosphorus Pentachloride"

Leningrad, Zhurnal Obshchey Khimii, Vol 42(104), No 7, Jul 72, pp 1496-1499

Abstract: The action of methyl dichlorophosphite on di- /3 -styryltrichlorophosphorus and its hydrochloride was studied, and it was found that the principal product of the reaction is di- /3 -styrylphosphinic acid chloride, rather than di /3 -styrylchlorophosphine. In the case of the hydrochloride, rather than di /3 -styrylchlorophosphine. In the case of the hydrochloride, small quantities of menostyryl derivatives of phosphorus -- /4 -styryldichlorophosphine and its oxide -- are formed as well as the principal reaction product. Di- /3 -styrylchlorophosphine was synthesized by disproportionation of /3 -styryldichlorophosphine at 240-250°C.

1/1

29

UDC 538.113:541.515:547.63'118

IL'YASOV, A. V., LEVIN, Ya. A., MOROZOVA, I. D., VAFINA, A. A., GOZMAN, I. P., and ZOROATSKAYA, Ye. I., Institute of Organic Chemistry, imeni A. Ye. Arbuzov, USSR Academy of Sciences, Kazan'

"Delocalization of the Unpaired Electron in Phosphorus-Containing Anion-Radicals"

Moscow, Doklady Akademii Nauk SSSR, Vol 201, No 1, Nov-Dec 1971, pp 108-111

Abstract: It is of current interest whether elements of the third period function as barriers in conjugated systems, or are able to participate in conjugation.

The distribution of spin density in the anion-radical of triphenylphosphine and its oxide were studied. The compounds were prepared by electrochemical reduction. For a more rigorous picture of delocalization of the unpaired electron, completely and partially deuterated Ph₃P and Ph₃PO were synthesized and studied. Dimethylformamide and acetonitrile solutions of the anion-radicals were studied at concentration of ca. 5·10⁻³ M, using epr spectroscopy.

27-

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

THE CONTROL OF A C

्र USSR

IL'YASOV, A. V., et al., Doklady Akademii Nauk SSSR, Vol 201, No 1, Nov-Dec 1971, pp 108-111

Based on preliminary results, it is concluded that, unlike compounds of elements of the second period, the electron structure of phosphorus anion-radicals cannot be described by a simple π -electron theory; the so-called d-model must be rejected. The concepts of completely delocalized molecular orbitals and multi-center bonds must be used, with allowance for all valence electrons.

2/2

Free Radicals

MANUAL SECTION OF THE SECTION OF THE

USSR

UDC 541.13+541.515+542.941-661.718.1

IL'YASOV, A. V., KARGIN, Yu. M., LEVIN, Ya. A., MOROZOVA, I. D., MEL'NIKOV, B. V., VARINA, A. A., SOTNIKOVA, N. N., and GALEYEV, V. S., Institute of Organic and Physical Chemistry imeni A. Ye. Arbuzov, USSR Acad. of Sciences

"Electrochemically Generated Free Radicals. 6. The Reduction Mechanism of Certain Organophosphorus Compounds, and the Electron Paramagnetic Resonance Spectra of the Anion Radicals Formed"

Moscow, Izvestiya Akademii Nauk SSR, Seriya Khimicheskaya, No 4, 71, pp 770-776

Abstract: A series of organophosphorus compounds was studied in connection with their electrochemical reduction, using several methods. The electron paramagnetic method was applied in the case of electrochemically generated anion radicals of triphenylphosphine, its oxides, and the diethyl ester of \(\theta\)-styrylphosphonic acid.

Graphical data accompanying the paper include classical and commutated polarograms for the various compounds, and electron paramagnetic spectra for free radicals; numerical electrochemical data are given for nine organophosphorus compounds tested.

1/1

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

an production of the production of the state of the state

USSR

UDC: 547.241.07

LEVIN, Ya. A., CAZIZOVA, L. Kh., "Order of the Red Banner of Labor" Institute of Organic and Physical Chemistry imeni A. Ye. Arbuzov

"A Method of Synthesizing F-Chloroethylphosphonic Acid Dichloride"

Moscow, Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, No 15, May 71, Author's Certificate No 302345, Division C, filed 22 May 69, published 28 Apr 71, p 81

Translation: This Author's Certificate introduces a method of synthesizing -chlorcethylphosphonic acid dichloride by the reaction of the product of thermal isomerization of tris- - chloroethyl phosphite with phosphorus pentachloride on heating in the presence of catalytic amounts of ferric chloride with subsequent isolation of the product by conventional methods. As a distinguishing feature of the patent, the product yield is increased by carrying cut the process at 110-130°C.

1/1

115 .

SAMENTALISMAN DE COMPANDE COMPANDAMENTO COMPANDAMENTO COMPANDA DE COMPANDAMENTO DE COMPANDAMENTO.

UDC: 547.341.07

MAGDEYEV, I. M., LEVIN, Ya. A., IVANOV, B. Ye., Institute of Organic and Physical Chemistry imenia. Ye. Arbuzov

"A Method of Synthesizing 2,5-Dihydroxyphenyldiphenylphosphine Oxide"

Moscow, Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, No 15, Nay 71, Author's Certificate No 302346, Division C, filed 16 Mar 70, published 28 Apr 71, p 81

Translation: This Author's Certificate introduces: 1. A method of synthesizing 2,3-dihydroxyphenyldiphenylphosphine oxide by the reaction of a phosphinous acid derivative with ρ -benzoquinone in an organic solvent with heating, and isolating the product by conventional methods. As a distinguishing feature of the patent, the process is simplified by using diphenylphosphinous acid dicaloride as the phosphinous acid derivative, and carrying out the process in the presence of water. 2. A modification of this method distinguished by the fact that the process is carried out at 60-65°C. 3. A modification of this method distinguished by the fact that benzene is used as the solvent. 4. A modification of this method distinguished by the fact that the diphenylphosphinous acid dichloride is added with strong agitation to an emulsion of water and a benzene solution of ρ -benzoquinone. 5. A modification of this method distinguished by the fact that the initial reagents are taken in equimolar proportions.

1/1

UDC 547.26'118'223.07

LEVIN, YA.A., and PYRKIN, R. I., "Order of the Red Banner of Labor Institute of Organic and Physical Chemistry imeni A. Ye. Arbuztov

"A Method of Producing Bis- & -Bromoethylphosphinic Acid"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 17, 1970, Author's Certificate No 270731, filed 22 May 69, p 23

Abstract: This Author's Certificate introduces: 1. A method of producing bis-8 -bromoethylphosphinic acid based on phosphorus halide compounds. As a distinguishing feature of the patent, the process is simplified and the product yield is increased by using phosphorus tribromide as the phosphorus halide compound. The phosphorus tribromide is interacted with entylene in the presence of aluminum tribromide with subsequent decomposition of the intermediate comples and isolation of the product by conventional intermediate complex and isolation of the product by conventional methods. 2. The method described in (1) is distinguished in that the process is carried out first with cooling to 10-20° C, and the process is carried out first with subsequent heating to 100° C. then at a temperature of 30-45°C with subsequent heating to 100° C.

1/1

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

_ 75 -

Free Radicals

USSR

UDG 541.13+541.515

IL'YASOV, A. V., KARGIN, Yu. M., LEVIN, Ya. A. and MEL'NIKOV, B. V., Institute of Organic and Physical Chemistry imeni A. Ye. Arbuzov, Academy of Sciences of the USSR

"Electrochemically Generated Free Radicals. Report 5. Activation Energy of the Current-Determining Process and Subsequent Chemical Reactions"

Moscow, IAN SSSR, Seriya Khimicheskaya, No 9, Sep 70, pp 1,979-1,983

Abstract: A method is proposed for studying the mechanism of an electrochemical process and for a quantitative evaluation of kinetic parameters of the initiated or subsequent chemical reaction by measuring the activation energy of the limiting current in polarography and commutator polarography. Analysis of various special cases for both cathode and anode processes shows that secondary paramagnetic products must be taken into account in interpreting the electron paramagnetic spectra of electrochemically generated anion radicals. The method proposed in this paper was used to study the mechanism of reduction and generation of anion radicals of a number of organophosphorus and carbonyl compounds. The results are to be published in subsequent reports.

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

UDC:541.6 541.124+661.718.1

LEVIN, Ya. A., GOZMAN, I. P., and SIDOROVA, Ye. Ye., Institute of Organic and Physical Chemistry imeni A. Ye. Arbuzov, Academy of Sciences USSR

*Structure and Mechanism of Formation of Oligophosphonates from Dialkyl Chlorophosphites and Aldehydes"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No 1, Jan 70, pp 173-175

Abstract: Two oligomers (1 and 2) were prepared by similar reactions of (EtO)2 PCl with PrCHO or PhCHO, respectively. The reaction with PrCHO was exothermic and resulted in loss of EtCl. Subsequently, the reacting mixture was heated 4 hr. at 100°, then for 1 hr at 170° in vacuo. The product was an extremely viscous liquid. The product of the reaction with PhCiO was a glassy solid. A third oligomer (3), a yellow powder, was prepared by a similar reaction from (iso-Bu0)2FCl and p-(NO2)Con4CHO. The polyphosphonate structure [-P(O)(OR)CHR'O-] was attributed to the alternating link of the oligomers heated with from their hydrolysis and pyrolysis data. The 1 and 2 oligomers heated with concentrated HCl for 4 hr. yielded 95% Pr CH(OH)PO H2 and 90% Ph CH(OH)PO H2, espectively. Pyrolysis of 1 oligomer at 250-270 in vacuo gave 10% of a cyclic

1/2

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

USSR

IEVIN, Ya. A., et al, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No 1, Jan 70, pp 173-175

dimer containing the same bonds as 1. An unusual, stepwise polycondensation mechanism was proposed to explain formation of the oligophosphonate molecules with the ester-chloride end groups.

2/2

CIA-RDP86-00513R002201810003-4" APPROVED FOR RELEASE: 09/19/2001

UDC 77

USSR

GOROKHOVSKIY, V. M., LEVIN, YA. A., SOTNIKOVA, I. P., RAKOVA, N. F., KARUNINA, V. V., GALIMOVA, A. M.

"Certain Photographic and Physicochemical Properties of 2- and 5-n-alkyl Homologs of 4-oxc-6-methyl-1,2,4-triazole-(2,3a)-pyrimidine"

Uspekhi nauchn. fotogr. (Advances in Scientific Photography), 1970, 701. 14, pp 24-29 (from RZh-Fizika, No 12(I), Dec 70, Abstract No 1201340)

Translation: Photographic and physicochemical properties of 2- and 5-n-alkyl derivatives of sta-salt with substitutes before CyH15 in the second position and before C9H19 in the fifth position. All these substances effectively stopped aging of the emulsion; their stabilizing activity decreased with concentration and there was also observed a greater dilution for a longer alkyl radical. The action of these substances on the emulsion at the time of introduction varied: an increase and a lowering of sensitivity or fogging were encountered, but with an increase in the length of the substitute the predominant effect became desensitization in combination with defogging, a property absent in sta-salt. A

1/2

USSR

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

GOROKHOVSKIY, V. M., et al, Uspekni nauchn. rotogr., 1970, vot. 14, pp 14-25

study of the adsorption of sta-salt homologs on the Hg electrode by the oscillographic polarography method showed that as distinct from sta-salt, which does not have oxidation-reduction peaks and capacity jumps in the region limited by the anode wave of Hg-oxidation and reduction of the background homologs of sta-salt give desorption peaks in this region, the height of which rises with an increase in the length of the substitute and correlates well with their desensitizing effect. This correlation indicates that the deactivization of the sensitivity centers is greater as substances are adsorbed more intensively. A determination of acid dissociation constants of sta-salt homologs and the solubility products of their Ag-salts showed that both quantities drop with an increase in the length of the substitute and the latter must also lead to progressive desensitization. 16 references. Authors abstract.

2/2

- 70 -

1/2 013 UNCLASSIFIED PROCESSING DATE--18SEP70
TITLE--STRUCTURE AND MECHANISM OF FORMATION OF OLIGOPHOSPHONATES FROM
OIALKYL CHLOROPHOSPHITES AND ALDEHYDES -UAUTHOR-(03)-LEVIN, YA.A., GOZMAN, I.P., SIDOROVA, E.E.

COUNTRY OF INFO--USSR

SOURCE--IZV. AKAD. NAUK SSSR, SER. KHIM. 1970, (1), 173-5

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--ALDEHYDE, ORGANIC PHOTPHORUS COMPOUND, CHLORINATED ORGANIC COMPOUND, BLIGOMER, CHEMICAL REACTION MECHANISM, EXOTHERMIC REACTION, MOLECULAR STRUCTURE

CONTROL MARKING--NO RESTRICTIONS

ODCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1984/1628

STEP NO--UR/0052/70/000/001/0173/0175

CIRC ACCESSION NO--APOLO0238

UNC 45-18-160

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

PROCESSING DATE--18SEP/O UNCLASSIFIED 2/2 013 CIRC ACCESSION NO--APO100238 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. MEXING EQUINDLAR AMTS. PRCHO AND TETO) SUB2 PCL RESULTED IN EXOTHERMIC REACTION AND LOSS OF ETCL, COMPLETED BY 4 HR AT 100DEGREES, TO YIELD AFTER FURTHER I HR AT 170DEGREES FINALLY IN VACUO, A VISCOUS OLIGOMER (PRO) (OR) CHR PRIMET () SUBN (I) IR EQUALS ET, R PRIME! EQUALS PRI LIA); HEATED WITH CONCO. HCL 4 HR THIS GAVE 95PERCENT PRCHIOHIPO SUB3 H SUB2, M. 161-2DEGREES; PYROLYSIS OF IA AT 250-70DEGREES IN VACUO GAVE LOPERCENT II IR EQUALS ET, R PRIMEI EQUALS PR), B SUBO TIMES 035 123-6DEGREES. N PRIME20 SUBD 1.4578, D PRIMEZO 1.1616. SIMILARLY, REACTION WITH BZH GAVE I IR EQUALS ET. R PRIME! EQUALS PHI. A GLASSY SOLID, WHICH HYDROLYZED WITH AQ. HCL TO 90DEGREES PHCHIDHIPD SUB3 H SUB2, M. 172-3.5DEGREES. SIMILARLY WAS PREPD. THE OLIGOMER FROM RHO-O SUB2 NC SUB6 H SUB4 CHO AND (150-800) SUB2 PCL, A YELLOW SOLID. A SCHEME FOR FORMATION OF I WAS GIVEN.

THE LASS FEED

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

UNCLASSIFIED PROCESSING DATE--300CT70 1/2 037

TITLE--DIETHYLPHOSPHONACETALS OF POLY VINYL ALCOHOL -U-

AUTHOR-(05)-LEVIN, YA.A., GAZIZOVA, L.KH., YAGFAROVA, T.A., KOVALENKO, V.I., TEYTELBAUM, B.YA.

COUNTRY OF INFO--USSR

SOURCE--VVSOKOMOL. SOEDIN., SER. A 1970, 12(3), 574-9

DATE PUBLISHED---- 70

SUBJECT AREAS -- CHEMISTRY, MATERIALS

TOPIC TAGS--ACETAL, ORGANIC PHOSPHURUS COMPOUND, POLYVINYL ALCOHOL. POLYMER, ELASTIC DEFORMATION, POLYMER CROSSLINKING, ESTERIFICATION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1995/1208

STEP NO--UR/0459/70/012/003/0574/0579

CIRC ACCESSION NO--APOLI6673

UNCLASSIFIED.

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

PROCESSING DATE--300CT70 UNCLASSIFIED 2/2 037 CIRC ACCESSION NO--APOLI6673 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. POLYIVINYL ALC.) (I) WAS ACETALATED WITH (ETO) SUB2 P (O)CH SUB2 CHO IN THE PRESENCE OF CF SU33 CO SUB2 H AND H SUB2 O AT GODEGREES TO GIVE A WHITE, RUBBERLIKE POLYMER (CONTG. LESS THAN OR EQUAL TO SPERCENT PIEN 85-100PERCENT YIELD. SPECTRA AND THERMOMECH. TESTS SHOWED THAT THE POLYACETALS (II) (CONTG. IOPERCENT ACETALS GROUPS) WERE MORE SUSCEPTIBLE TO ELASTIC DEFORMATIONS THAN I, PRESUMABLY DUE TO DECREASED MOL. INTERACTION. INCREASED RIGIDITY, OBSD. IN II (CONTG. GREATER THAN 20PERCENT ACETAL GROUPS) HEATED TO 150-200DEGREES, WAS ATTRIBUTED TO CROSSLINKING OCCURRING DURING TRANSESTERIFICATION OF PIGET) SUB2 GROUPS WITH ADJACENT OH FACILITY: INST. DRG. FIZ. KHIM. IM. ARBUZOVA, KAZAN, GROUPS. USSR.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

UDC 541.515:547.1:118

IEVIN YA. A., IL'YASOV, A. V., and GOL'DFARB, E. I., Institute of Organic and Physical Chemistry Imeni A. Ye. Arbuzov, Acad. Sc. USSR

"Phosphonium Radical Ambidentity and Chemical Polarization of Phosphorus Nuclei in the Products of Its Reactions"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No 7, Jul 72, pp 1676-1677

Abstract: During photolysis of acetone, diethylketone, acetaldehyde, and in thermolysis of ditert-butylperoxide, dicyclohexylpercarbonate, Lauryl peroxide in dialkylphosphites, chemical polarization of the phosphorus nuclei is observed in $(RO)_2$ P-O-P(O)(OR), and in $(RO)_2$ F(:0)-P(:0)-(OR). The appearance of a multiplet effect in the subphosphates due to the spin-spin interaction in the system P-O-P(O) shows that these compounds form by recombination of two phosphine radicals. Concurrent presence of polarized hypophosphase indicates a double reactivity of these radicals: through the oxygen or through the phosphorus. The multiplet effect in the subphosphate corresponds to the recombination of two independently generated phosphone radicals.

1/1

CIA-RDP86-00513R002201810003-4"

APPROVED FOR RELEASE: 09/19/2001

UDC 541.515:547.1'118

LEVIN. YA. A., IL'YASOV, A. V., GOL'DFARB, E. I., and VOPKUNOVA, YE. I., Institute of Organic and Physical Chemistry Imeni A. Ye. Arbuzov, Acad. Sc. USSR

"Proof of the Existence of Phosphoroanilic Radicals"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No 7, Jul 72, pp 1673-1674

Abstract: During the thermolysis of di-tertiary butyl peroxide in triphenyl-phosphite a negative polarization of phosphorus nuclei is observed in the intermediate product -- diphenyl-tert-butylphosphite and in triphenylphosphate. During the thermolysis of benzolazotriphenylmethane in trialkylphosphites a negatively polarized dialkylphenylphosphonate is formed. During the photolysis of CCl₃Br under a mercury lamp in triethyl- or tributylphosphites, concurrently with the negative polarization of phosphorus nuclei in dialkyltrichloromethyl-phosphonate and dialkylbromophosphate, a strong emission is observed in the starting phosphite. These facts are considered to be sufficient proof for the existence of a stable intermediate phosphoroanilic radical in the reactions cited.

1/1

- 40 -

UDC 547,241 223 212

LEVIN, Ya. A., and PYRKIN, R. I., Institute of Organic and Physical Chemistry Imeni A. Ye. Arbuzov, Acad. Sc. USSR, Kazan!

"Bromoethyl and Bis- β -bromoethyl Phosphorus Derivatives"

Leningrad, Zhurnal Obshchey Khimii, Vol 43 (105), No 2, Feb 73, pp 283-288

Abstract: Dehydrobromination of β -bromoethyldibromophosphine yields vinyldibromophosphine. Starting from β -bromoethyldibromophosphine syntheses were carried out of β -bromoethylphosphonous, bis- β -bromoethylphosphinic acids and a series of their derivatives. β -Bromoethyldibromophosphine undergoes P-ethylation in presence of the ethyl bromide-aluminum bromode complex.

1/1

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

IDC 620.193.5

SOROKIN, YU. I., TSEYTLIN, KH. L., VALASHOVA, A. A., HABITSKAYA, S. K., IEVIN, YA. S., Scientific-Research Institute of Organic Somi-Products and Dyes

*Influence of Hater Vapor and Its Mixtures With Carbon Dioxide on Corrosion of Estals in Ammonia at 5000"

Moscow, Zashchita Matallov, No 4, 1972, pp 430-434

Abstract: It was shown earlier that the catalytic action of netals on dissociation of amonia and their corrosinn resistance are interrelated. It was therefore of interest to determine the influence of water vapor and its mixtures with CO_2 on the resistance of metals to a stream of gaseous

anmonia. The addition of water vapor has little influence on corrosion losses of carbon steel, but its rechanical proporties change significantly, specimens breaking at banding angles of 30° after 400 hours (as opposed to 90° in pure amonia). Water vapor charply reduces the corrosion of stainless steel. The strength properties of the steel change little. The addition of carbon dioxide with water vapor sharply increases total corresion of carbon steel. The strength properties change slightly, but cracks appear at bending angles of 90°.

1/1

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

UDC: 620,193,5

TSEYTLIN, Kh. L., SOROKIN, Yu. I., BALASHOVA, A. A., BABITSKAYA, S. M., LEVIN, Ya. S., KONYUSHENKO, A. T., GOLDIKIN, R. V., and LADKZHINSKIY, B. S., Scientific Research Institute of Organic Intermediates and Dyestuffs

"High-Temperature Corrosion of Metals in Gaseous Ammonia"

Moscow, Zashchita Metallov, Vol. 6, no. 4, 70, pp 451-454

Abstract: Processes involving the use of ammonia are known to cause corrosion of equipment. The homogeneous reaction of ammonia dissociation in the gas phase begins above 1200-1300°C. In the presence of a catalyst this temperature drops to 300-400°C. Experiments have shown that the type of modula considerably affects the thermal dissociation of ammonia and that this effect is a function of temperature. This study describes in detail the testing and effects of gaseous ammonia on KhN10T steel, KhN78T, N70M27F, and Kh15N55M16V alloys, VT-1 titanium, and MZS copper. The analysis of experimental data shows that there is a fundamental correspondence between the effect of metals on ammonia dissociation and their resistance. Therefore, to insure continuous service of equipment in gaseous ammonia, it is advisable to use materials which

1/2

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

USSR

TSEYTLIN, Kn. L., et al, Zashchita Metallov, Vol 6, no. 4, 70, pp 451-454

will not readily catalyze ammonia dissociation. Materials which are suitable for service under these conditions include carbon steel and N70M27F, Kal5N5516V alloys up 400°C; Khl8N10T steel and nickel up to 300°C; KhN78T up to 600°C; aluminum, titanium, and copper up to 450°C. Considering the low specific gravity, good technological properties, relative availability, and low cost of aluminum, this metal is preferred in selecting materials for equipment operated in this metal is preferred in selecting materials for equipment operated in gaseous ammonia at high temperatures. A table illustrating the performance of the above metals during 400 hours of testing with gaseous ammonia at high temperatures, including corrosion rate tensile strength, relative elongation, and Vickers hardness, prior to and after the experiment, is given in the original article.

2/2

- ?() ..

·罗·特尔克斯特特拉尔 计多位 排放。

1/2 018 UNCLASSIFIED PROCESSING DATE--04DEC70
TITLE--HIGH ENERGY SCATTERING MODEL WITH A VIOLATION OF THE POMERANCHUK

THEOREM -UAUTHOR-(04)-ANSELM, A.A., DANILOV, G.S., DYATLOV, I.T., LEVIN, YE.M.

COUNTRY OF INFO--USSR

market in the

SOURCE--YAD. FIZ. 1970, 11(4), 896-901

DATE PUBLISHED----70

SUBJECT AREAS -- PHYSICS

TOPIC TAGS--PARTICLE INTERACTION, ANTIPARTICLE, INTEGRAL CROSS SECTION, NUCLEAR MODEL, SCATTERING CROSS SECTION, ENERGY SPECTRUM, HIGH ENERGY PARTICLE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PRDXY REEL/FRAME--3007/1000

STEP NO--UR/0367/T0/011/004/0896/0901

CIRC ACCESSION NO--APO136427

timet assiffed

UNCLASSIFIED PROCESSING DATE--04DEC70 2/2 018 CIRC ACCESSION NO--APO136427 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. EXAMPLES ARE PRESENTED FOR THE POSSIBLE VIOLATION OF THE THEORY OF THE EQUALITY OF THE TOTAL CROSS SECTION OF PARTICLE AND ANTIPARTICLE INTERACTIONS (I. YA. POMERANCHUK, 1958) IN MODELS BASED ON THE LOGARITHMIC DEPENDENCE OF THE INCREASE IN THE INTERACTION RADIUS WITH THE INCREASING ENERGY. THE EXAMPLES SATISFIED THE GENERAL PRINCIPLES OF THIS THEORY, I.E. THE ANALYTICITY, THE CROSSING SYMMETRY, AND UNITARITY. THE DIFFRACTIONAL MODELS WITH THE S CHANNEL PARTIAL WAVE AMPLITUDE EQUAL SIMILAR TO 1-IN S AND THAT HITH THE TOTAL ABSORPTION AND CROSS SECTION SIGNA SUBTOT SIMILAR TO IN PRIMEZ FACILITY: FIZ -TEKH INST. IM. S ARE DISCUSSED IN DETAIL. IOFFE, LENINGRAD, USSR. UNCLASSIFIED

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

1/2 016 UNCLASSIFIED PROCESSING DATE--04DEC70
TITLE--PREDICTIONS FOR THE POLARIZATION OF FINITE PARTICLES IN ELASTIC AND
INELASTIC PROCESSES AT HIGH ENERGIES -UAUTHOR-(03)-KUDRYAVTSEV, V.A., LEVIN, YE.M., SHCHIPAKIN, A.A.

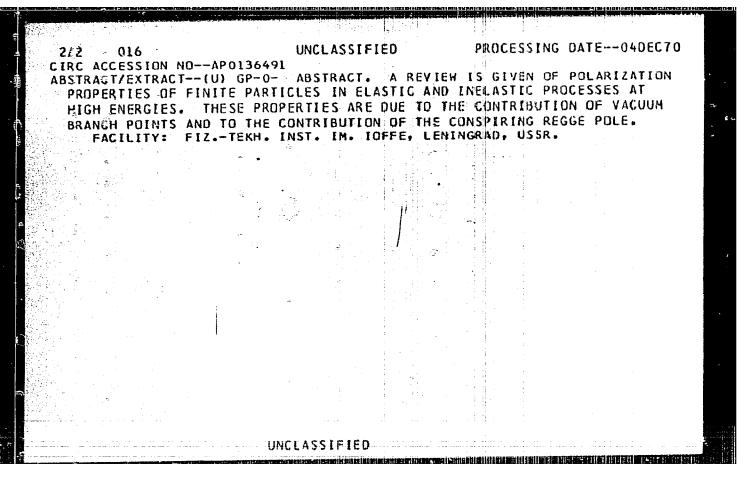
COUNTRY OF INFO---USSR

SOURCE--YAD. FIZ. 1970, 11(4), 858-69

DATE PUBLISHED----70

SUBJECT AREAS--PHYSICS

TOPIC TAGS--HIGH ENERGY PARTICLE, REGGE POLE, ELASTIC SCATTERING, INELASTIC SCATTERING


CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3007/1071

STEP NO--UR/0367/70/011/004/0858/0869

CIRC ACCESSION NO--APOL36491

UNCLASSIFIED

USSR

KUDRYAVTSEV, V. A., LEVIN, Ye. M., Leningrad Institute of Nuclear Physics, Soviet Academy of Sciences

"Polarization of Particles in Inclusive Reactions"

Moscow, Yadernaya Fizika, Vol 18, No 2, Aug 73, pp 451-463

Abstract: 'The paper discusses polarization phenomena in inclusive reactions $a+b \rightarrow c+...$, for the case in which particles a, b, c have arbitrary spin. On the basis of the formalism of invariant vertices of interaction of reggeons with particles of any spin, specific predictions are made for some polarization phenomena in the central reggeon region, the three--reggeon limit, and the fragmentation region. It is found that in inclusive reactions the probabilities for production of particles with differently directed spins are not identical even in the region of pionization. (For instance, the number of π -mesons from ρ -decay depends on the angle between the plane of the decay and the plane of the reaction.) Experiments with polarized targets can isolate the region of target fragmentation, since it is only in this region that the quantity $f = (\sigma_- - \sigma_+)/(\sigma_+ + \sigma_-)$ (subscripts ± correspond to nucleon spins) differs from zero, although estimates show 1/2

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

USSR

KUDRYAVISEV, V. A., LEVIN, Ye. M., Yadernaya Fizika, Vol 18, No 2, Aug 73, pp 451-463

that the difference is not very great (~0.1-0.2). The authors thank M. G. Ryskin for useful discussion of the results of the work.

2/2

... 59 ...

Finds of the state of the state

USSR

GRIBOV, V. N.; LEVIN. Ye. M.; MIGDAL, A. A. (Jeffe Physics-Engineering Institute, USSR Academy of Sciences)

"Fermion Regge Poles and Branch Points in the J-Plane"

Moscow, Journal of Nuclear Physics; March 1970, pp 673-86

ARSTRACT: The mechanism of the occurrence, positions, and basic properties of branch points in the complex angular momentum plane that are related to the fermion Regge poles is discussed. Additional singularities with the motion \sqrt{u} for $u \rightarrow 0$ arise due to interaction of fermion reggions with vacuum reggions ("enhanced graphs"). The general situation with the singularities has two scales: \sqrt{u} along the imaginary axis and u along the real axis. This corresponds to two diffraction radii in the scattering amplitude: $R_1 \sim \ln s$ and $R_2 \sim \sqrt{\ln s}$. Two possible solutions for the scattering amplitude (the so-called "strong" and "weak" couplings) are investigated at asymptotically high encregies, $\ln \ln s \gg 1$. In conclusion, the angular distribution in the case of weak coupling is considered.

weak coupling is considered. There are 13 biblio-The article includes 40 equations and 20 figures. There are 13 biblio-

graphic references.

1/1

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"

UDC: 669.783.5:538.2

en (en () (); (automoria () () (en () autori se el marrigaren a (su) al anterior (sur)

ZAV'YALOV, V. K., RADOVSKIY, I. Z., LEVIN, Ye. S., NVZOROVA, E. G., GEL'D, P. V., Sverdlovsk

"Magnetic Properties of Liquid Alloys of Germanium with Iron, Cobalt and Nickel"

Moscow, Izvestiya Akademii Nauk SSSR, Metally, No 6, 1973, pp 32-34.

Abstract: This article presents the results of investigation of the magnetic susceptibility of liquid Fe-Ge, Co-Ge and Ni-Ge alloys. The concentration-temperature dependence of magnetic susceptibility was studied by the Faraday method in the 900-1700° C temperature interval. It was found that the Curic-Weiss law is followed in Fe-Ge melts where N_{Ge} < 0.7, in Co-Ge melts where N_{Ge} < 0.45, and is not followed in Ni-Ge melts. The concentration dependences of effective magnetic moments $\mu_{\mbox{eff}}$ for Fe-Ge and Co-Ge alloys differ qualitatively. In the first case, the dependence of $\mu_{\mbox{eff}}$ on N_{Ge} shows a minimum near N_{Ge} = 0.2, while in the second case $\mu_{\mbox{eff}}$ remains independent of concentration approximately up to N_{Ge} = 0.15, then increases from 3.0 $\mu_{\mbox{B}}$ to 3.7 $\mu_{\mbox{B}}$ (at about 30 at. % Ge).

- 75 -

Physical Properties

USSR

UDC 669.715'25-537

LEVIN. Ye.S., GEL'D, P. V., and AYUSHINA, G. D., Ural Polytechnic Institute,

"Electric Resistance of Liquid Alloys of Cobalt With Aluminum"

Ordzhonikidze, Izvestiya Vysshikh Uchebnykh Zavedeniy, Tsvetnaya Metallurgiya, No 5, 1972, pp 111-115

Abstrict: The temperature-concentration dependences of the specific electric resistance of liquid alloys of cobalt with aluminum were experimentally investigated on specimens prepared from AV000 aluminum (99.98 %A1) and electrolytic cobalt containing less than 0.04% impurities. The investigation results are discussed by reference to diagrams showing the temperature dependence of the electroconductivity of and the specific electric resistance of aluminum, the polytherms, and the isotherm (1650°C) of 0 of liquid A1-C0 alloys. The isotherm has an extreme character approximately in accordance with the equiatomic alloy. All alloys showed a notable increase was observed on liquid A1-rich alloys (81.9 and 76.5 at% Al). Alloys with high Co-content showed typical properties of metals. The peculiarities of electroconductivity of A1-C0 melts are explained by the energetic non-equivalence of different interparticle actions. Three figures, three formulas,

UDC 541.123,28

LEVEN, YE. S., KOSTINA, T. K., PETRUSHEVSKIY, M. S., GEL'D, P. V., and KUROCHKIN, K. T., Ural Polytechnic Institute

"Solubility of Hydrogen in Liquid Alloys of Cobalt and Aluminum"

Ordzhonikidze, Izvestiya Vysshikh Uchebnykh Zavedeniy, Tsvetnaya Metallurgiya No 1, 1973, pp 31-36

Abstract: The solubility of hydrogen was studied as a function of the composition of Co-Al alloys ($0 \le x_A 1 \le 1$) and temperature (1300-1700°C). The solubility percentage was determined from the hydrogen pressure in a closed system, with a determination error of + 5.5%. The solubility of hydrogen in Co-Al alloys obeys the square root rule: $\int H = K \setminus P_H$, where $\int H$ is the hydrogen concentration in alloy, weight percentage; $P_H = 1$ is the hydrogen pressure in gaseous phase, bar; and K is the hydrogen solubility in alloy (weight percentage/bar $\frac{1}{2}$) which is numerically equal to its solubility in in metal at $P_H = 1$ bar. The solubility process of hydrogen is accompanied by dissociation of H molecules into atoms (ions), and it changes according to the extremum rule with a minimum at 50-60 at $\frac{1}{2}$ Al. The solubility process by logK = AT-1 + B, where A and B are coefficients which depend only on

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R002201810003-4"